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The total assignments of the H-nmr and *C-nmr spectra of SH-dibenz[b,flazepine [1] and 10,11-dihydro-
5H-dibenz[b,flazepine (2) have been made based on comparison with the corresponding 4,6-dideuterated de-
rivatives 3, and 4. These compounds were prepared via repeated lithiations and subsequent deuterations of 1

and 2.

J. Heterocyclic Chem., 21, 197 (1984).

5H-Dibenz[b,flazepine (1) and 10,11-dihdyro-5H-dibenz-
[b.flazepine (2) are parent systems of several clinically use-
ful psychotropic drugs [1}. Especially derivatives bearing
dimethylaminopropyl- (for example, imipramine) and
carbamoyl- (for example, carbamazepine) substituents at
the 5-position are of importance. Barriers to inversion of
the central azepine ring of N-alkyl-SH-dibenz[b,f]azepines
have been studied [2] and the assignment of the 'H-nmr
spectrum [3] and, very recently, the **C spectrum [4] of 1
have been reported using carbon disulfide as the solvent
(since 1 was considered to be unstable in deuteriochloro-
form). Despite the fact that the conformational equilibria

Table

in S-substituted-10,11-dihydro-SH-dibenz[b,flazepines
have been studied extensively [5,6] by variable tempera-
ture 'H and *C-nmr spectroscopy, no chemical shift as-
signments for the aromatic portion have been made in the
'H-nmr spectrum. Provisional assignments for '*C-nmr
chemical shift of 2 and related compounds based on rela-
tive intensities of quarternary and methine carbons and
considerations of steric and functional group parameters
have also been made [5}. We want now to report an un-
equivocal assignment of the 'H and *C-nmr spectra of 1
and 2 in deuteriochloroform, based on comparison with
the corresponding 4,6-dideuterioderivatives 3 and 4. At

'H-NMR and '*C-NMR Chemical Shifts for 1-4

IR =H 2R=H
3R=D 4R=D
'"H-NMR Data
H-1 (9) H-2 (8) H-3 (7) H-4 (6) H-11 (10) NH
1 (Deuteriochloroform) 6.85 6.81 7.02 6.47 6.32 4.92
2 (Deuteriochloroform) 7.03 6.76 7.06 6.70 3.06 5.94
J1,2 J2,3 J3.4 J1,3
1 (Deuteriochloroform) 7.3 6.6 7.7 23
2 (Deuteriochloroform) 74 74 8.1 1.6
13C.NMR Data
C1(9 C-2(8) C3(7) C-4 (6) C-10(11) C-9a (11a) C-4a (Sa)
1 (Deuteriochloroform) 130.51 123.00 129.45 119.30 132.12 129.75 148.39
3 (Deuteriochloroform) 130.50 122.98 129.34 118.98 [a] 132.11 129.73 148.35
Difference 40.01 0.02 0.11 -0.32 -0.01 0.2 -0.04
1 (d-DMSO) 130.44 121.90 129.48 119.10 132.06 129.10 149.48
3 (ds-DMSO) 130.43 121.85 129.37 118.8 [b] 132.06 129.09 149.43
Difference 0.01 0.05 0.11 0.3 0.00 0.01 -0.05
2 (Deuteriochloroform) 130.65 119.44 126.78 117.92 34.94 128.63 142.45
4 (Deuteriochloroform) 130.65 119.44 126.69 117.55 [¢] 34.94 128.62 142.37
Difference 0.00 0.00 -0.09 -0.37 0.00 -0.01 -0.08

{a] Triplet, Jisg2 = 18.9 HZ. [b] Poorly resolved triplet. [c] Triplet, Jisczg * 2'-® #%:
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the same time we report a correction in assignments of two
of the resonances in the reported >C-nmr spectrum [4] of 1
in ds-DMSO.

Metalation of 1 and 2, followed by trapping with differ-
ent electrophiles, have provided access to the correspond-
ing 4-substituted derivatives [7,8]. We have treated the
4,5-dilithio derivatives of 1 and 2 with deuterium oxide,
which gave an almost quantitative yields of the 4,5-dideu-
terated compounds. Repeated lithiations and deuterations
gave eventually 3 and 4. Examination of the product after
the second deuteration of 1 revealed that 87% of 3 had
been obtained indicating the existence of a large isotope
effect.

Considering the 'H-nmr spectrum of 1, the most shield-
ed proton was assigned to H-4 since the corresponding sig-
nals were absent in the spectrum of 3. The low field five
line pattern at 7.02 ppm in 1 appears as a double doublet
in 3 and this resonance has consequently been assigned to
H-3. The overlapping double doublet and triplet at 6.85
and 6.81 ppm were therefore assigned to H-1 and H-2, re-
spectively. The vinylic protons appeared as a sharp singlet
at 6.32 ppm and the nitrogen proton at 4.92 ppm as a
broad signal.

All carbons except for C-1 and C-6 were assigned by
comparison of the *C-nmr spectra of 1 and 3 (in deuterio-
chloroform); wherein the data were collected under identi-
cal conditions (table). The most shielded signal in 1 ap-
pears as a triplet in 3 and is assigned to C-4. The signal at
129.45 ppm is derived from C-3, since this signal is shifted
0.11 ppm upfield in the spectrum of 3; typical for carbons
attached to a deuterium substituted carbon {9]. Analogous-
ly the downfield quaternary carbon was assigned to C-4a,
since the corresponding resonance appears 0.04 ppm up-
field in the "*C-nmr spectrum of 3. The signal at 123.00
ppm was assigned to C-2, since the corresponding signals
in the deuterated compound 3 appeared to be consider-
ably broadened. This broadening is due to the unresolved
3Jep coupling to deuterium, being larger than 2Jc, and
4Jep [10,11]. In order to differentiate C-1 and C-11, a single
frequency decoupling at 6.32 ppm was performed, to give
the final assignment of this system. Similar results were
obtained for the '*C spectra of 1 and 3 in d¢-DMSO. Thus,
C-4 appeared as a poorly resolved triplet at around 118.8
ppm in 3. The signal at 129.48 ppm in 1 is assigned to C-3
(and not to C-1 as previously reported [4]) since this signal
is shifted 0.11 ppm upfield in the deuterated derivative 3
[9]. The only other resonance to undergo a shift is the qua-
ternary carbon signal at 149.48 ppm which experienced an
up-field shift of 0.05 ppm in 3. The signal at 130.44 ppm in
1 must, therefore, be assigned to C-1 and not to C-3.

The 'H-nmr spectrum of 2 shows two 2-hydrogen multi-
plets centered at 6.73 and 7.05 ppm. In the spectra of the
dideuterated compound 4 the upfield resonances were
simplified into a triplet, which was assigned to H-2. The
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low field multiplet appeared as two double doublets in the
spectra of 4 which consequently made it possible to assign
the remaining two protons; H-3 being slightly more de-
shielded than H-1.

The assignment of the *C-nmr spectrum of 2 was made
by direct comparison with the spectrum of 4. The most
shielded signal in the spectrum of 2 appears as an upfield
shifted triplet in the spectrum of 4 and is assigned to C-4.
The signal at 126.78 ppm and the quaternary downfield
signal at 142.45 are both shifted upfield in the spectrum of
4 and are derived from C-3 and C-4a, respectively. The sig-
nal at 119.44 ppm was considerably broadened in the spec-
trum of 4 and was assigned to C-2 (vide supra), and the re-
maining signals at 130.65 ppm and 128.63 ppm were con-
sequently assigned to C-1 and C-11a, respectively. Single
frequency decoupling at 6.73 ppm and at 7.05 ppm, as well
as chemical shifts arguments support this assignment.

In conclusion, the total assignment of the 'H-nmr and
13C-nmr spectra of 1 and 2 have been unequivocally made
almost entirely by comparison of their spectra with that of
the easily accessible dideuterated compounds 3 and 4. The
assignments do not require the invocation of chemical
shift or coupling constant arguments.

EXPERIMENTAL

The 'H-nmr and "*C-nmr spectra were recorded on a Bruker WH-250
NMR spectrometer at a frequency of 250.13 MHz (data point resolution
0.37 Hz) and 62.9 MHz (data point resolution 1.8 Hz) respectively. A 5
mm 'H probe and a 10 mm broadband probe (32-105 MHz) were used.
The samples were run as 0.5M solutions and tetramethylsilane was used
as internal standard. Mass spectra were recorded on a MAT 311A double
focusing mass spectrometer at 70 eV.

4,6-Dideuterio-5H-dibenz[b,flazepine (3) and 4,6-dideuterio-10,11-Dihyd-
ro-5H-dibenz{b,flazepine (4).

To a solution of 0.10 mole of dibenz[b,flazepine (1)(19.3 g) or 10,11-di-
hydro-5H-dibenz[b,flazepine (2) (19.5 g) in 500 ml of dry ether, 0.25 mole
(151.5 ml) of 1.65 N n-butyllithium in hexane was added at room tempera-
ture under nitrogen. After stirring for 20 hours, 0.50 ml (9.0 g) of deu-
terium oxide was added and the reaction mixture was then poured into
water. The organic phase was separated and the aqueous phase was ex-
tracted several times with ether. The combined organic phases were
washed with water and dried. After filtration of the drying agent, the or-
ganic phase was evaporated to a total volume of 500 ml and then trans-
ferred to a reaction flask for further addition of n-butyl lithium. After the
lithiation procedure and work up had been repeated five times, the sol-
vent was evaporated and the residue chromatographed (silica, ether) to
give 18.1 g (93%) of 4,6-dideuterio-5H-dibenz[b flazepine (3), mp
195-197° or [5H-dibenz[b,flazepine (1) lit [12] 196.5-198°] or 17.9 g (91 %)
of 4,6-dideuterio-10,11-dihydro-5H-dibenz[b,flazepine (4), mp 105-107°
(10,11-dihydro-5H-dibenz[b,flazepine (2), lit [13] 110°), ms (high resolu-
tion) m/e calced. for C,,H,D,N(3) 195.1017; found 195.1020, and calcd. for
C,4H,,D,N(4) 197.1173; found 197.1164, respectively. No traces of either
undeuterated or monodeuterated compound could be detected in the
'H-nmr or **C-nmr spectra. A sample taken out after the second metala-
tion and deuteration of 1 showed an 89% yield of 3 according to 'H-nmr
and ms analyses.
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